

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

6 JUNE 2006

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

Tuesday

Core Mathematics 2

Afternoon

1 hour 30 minutes

4722

Additional materials: 8 page answer booklet Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

This question paper consists of 4 printed pages.

© OCR 2006 [D/102/2694]

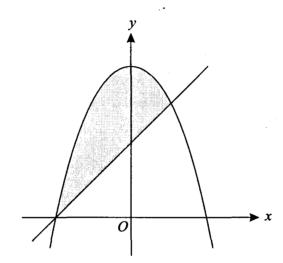
Registered Charity Number: 1066969

[Turn over

2

1 Find the binomial expansion of $(3x-2)^4$.

4


2 A sequence of terms u_1, u_2, u_3, \ldots is defined by

 $u_1 = 2$ and $u_{n+1} = 1 - u_n$ for $n \ge 1$.

(i) Write down the values of u_2 , u_3 and u_4 . [2]

(ii) Find
$$\sum_{n=1}^{100} u_n$$
. [3]

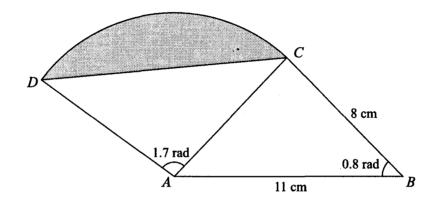
3 The gradient of a curve is given by $\frac{dy}{dx} = 2x^{-\frac{1}{2}}$, and the curve passes through the point (4, 5). Find the equation of the curve. [6]

The diagram shows the curve $y = 4 - x^2$ and the line y = x + 2.

- (i) Find the *x*-coordinates of the points of intersection of the curve and the line. [2]
- (ii) Use integration to find the area of the shaded region bounded by the line and the curve. [6]
- 5 Solve each of the following equations, for $0^{\circ} \le x \le 180^{\circ}$.

(i)
$$2\sin^2 x = 1 + \cos x$$
. [4]

 $(ii) \sin 2x = -\cos 2x.$ [4]


[4]

(i) John aims to pay a certain amount of money each month into a pension fund. He plans to pay £100 in the first month, and then to increase the amount paid by £5 each month, i.e. paying £105 in the second month, £110 in the third month, etc.

If John continues making payments according to this plan for 240 months, calculate

(a)	how much he will pay in the final month,	[2]
------------	--	-----

- (b) how much he will pay altogether over the whole period. [2]
- (ii) Rachel also plans to pay money monthly into a pension fund over a period of 240 months, starting with £100 in the first month. Her monthly payments will form a geometric progression, and she will pay £1500 in the final month.
 - Calculate how much Rachel will pay altogether over the whole period. [5]

The diagram shows a triangle ABC, and a sector ACD of a circle with centre A. It is given that AB = 11 cm, BC = 8 cm, angle ABC = 0.8 radians and angle DAC = 1.7 radians. The shaded segment is bounded by the line DC and the arc DC.

(i) Show that the length of AC is 7.90 cm, correct to 3 significant figures.	[3]
(ii) Find the area of the shaded segment.	[3]

(iii) Find the perimeter of the shaded segment.

6

7

8 The cubic polynomial $2x^3 + ax^2 + bx - 10$ is denoted by f(x). It is given that, when f(x) is divided by (x-2), the remainder is 12. It is also given that (x + 1) is a factor of f(x).

(i) Find the values of a and b.	[6]

(ii) Divide f(x) by (x + 2) to find the quotient and the remainder. [5]

[Question 9 is printed overleaf.]

4722/S06

[Turn over

[4]

9

- (i) Sketch the curve $y = \left(\frac{1}{2}\right)^x$, and state the coordinates of any point where the curve crosses an axis. [3]
 - (ii) Use the trapezium rule, with 4 strips of width 0.5, to estimate the area of the region bounded by the curve $y = (\frac{1}{2})^x$, the axes, and the line x = 2. [4]
 - (iii) The point P on the curve $y = \left(\frac{1}{2}\right)^x$ has y-coordinate equal to $\frac{1}{6}$. Prove that the x-coordinate of P may be written as

$$1 + \frac{\log_{10} 3}{\log_{10} 2}.$$
 [4]

4722/S06

4722 Core Mathematics 2 – June 2006

1		$(3x-2)^4 = 81x^4 - 216x^3 + 216x^2 - 96x + 16$	M1 A1 A1 A1	4	Attempt binomial expansion, including attempt at coeffs. Obtain one correct, simplified, term Obtain a further two, simplified, terms Obtain a completely correct expansion
2	(i)	$u_2 = -1, u_3 = 2, u_4 = -1$	B1 B1	<u>4</u> 2	For correct value -1 for u_2
	(ii)	Sum is $(2+(-1))+(2+(-1))++(2+(-1))$ i.e. $50\times(2+(-1))=50$	M1 M1 A1	3	For correct values for both u_3 and u_4 For correct interpretation of Σ notation For pairing, or $50 \times 2 - 50 \times 1$ For correct answer 50
		$1.0.30 \times (2 + (-1)) = 30$		<u>5</u>	
3		$y = 4x^{\frac{1}{2}} + c$	M1 A1		For attempt to integrate For integral of the form $kx^{\frac{1}{2}}$
		Hence $5 = 4 \times 4^{\frac{1}{2}} + c \Longrightarrow c = -3$	A1 M1		For $4x^{\frac{1}{2}}$, with or without $+c$ For relevant use of (4, 5) to evaluate c
		Thence $3 = 4 \times 4^{-} + c \rightarrow c = -3$	A1√		For correct value -3 (or follow through on integral of form $kx^{\frac{1}{2}}$)
		So equation of the curve is $y = 4x^{\frac{1}{2}} - 3$	A1	6	For correct statement of the equation in full (aef)
4	(i)	Intersect where $x^2 + x - 2 = 0 \Rightarrow x = -2, 1$	M1 A1	2	For finding <i>x</i> at both intersections For both values correct
	(ii)	Area under curve is $\left[4x - \frac{1}{3}x^3\right]_{-2}^{1}$	M1 M1		For integration attempt with any one term correct For use of limits – subtraction and correct order
		i.e. $\left(4-\frac{1}{3}\right)-\left(-8+\frac{8}{3}\right)=9$	A1		For correct area of 9
		Area of triangle is 4 ¹ / ₂	M1 A1	6	Attempt area of triangle ($\frac{1}{2}bh$ or integration) Obtain area of triangle as 4 $\frac{1}{2}$
		Hence shaded area is $9 - 4\frac{1}{2} = 4\frac{1}{2}$	A1	6	Obtain correct final area of 4 ¹ / ₂
		OR Area under curve is $\int_{-2}^{1} (2 - x - x^2) dx$ = $\left[-\frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x \right]_{-2}^{1}$	M1 M1 A1		Attempt subtraction – either order For integration attempt with any one term correct Obtain $\pm \left[-\frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x\right]$
		$= \left(-\frac{1}{3} - \frac{1}{2} + 2\right) - \left(\frac{8}{3} - 2 - 4\right)$ $= 4\frac{1}{2}$	M1 A1		For use of limits – subtraction and correct order Obtain $\pm 4 \frac{1}{2}$ - consistent with their order of subtraction Obtain 4 $\frac{1}{2}$ only, following correct method only
			A1	<u>8</u>	
5	(i)	$\sin^2 x = 1 - \cos^2 x \Longrightarrow 2\cos^2 x + \cos x - 1 = 0$ Hence $(2\cos x - 1)(\cos x + 1) = 0$	M1 M1		For transforming to a quadratic in cos <i>x</i> For solution of a quadratic in cos <i>x</i>
		$\cos x = \frac{1}{2} \Longrightarrow x = 60^{\circ}$ $\cos x = -1 \Longrightarrow x = 180^{\circ}$	A1 A1	4	For correct answer 60° For correct answer 180° [Max 3 out of 4 if any extra answers present in range, or in radians] SR answer only is B1, B1 justification – ie graph or substitution is B2, B2
	(ii)	$\tan 2x = -1 \Longrightarrow 2x = 135 \text{ or } 315$	M1 M1		For transforming to an equation of form $\tan 2x = k$ For correct solution method, i.e. inverse tan followed by division by 2
		Hence $x = 67.5^{\circ} \text{ or } 157.5^{\circ}$	A1 A1	4	For correct value 67.5 For correct value 157.5

OR	Obtain linear equation in cos 2x or sin 2x
$\sin^2 2x = \cos^2 2x$	Use correct solution method
$2\sin^2 2x = 1$ $2\cos^2 2x = 1$	For correct value 67.5
$\sin 2x = \pm \frac{1}{2}\sqrt{2}$ $\cos 2x = \pm \frac{1}{2}\sqrt{2}$	For correct value 157.5
Hence $x = 67.5^\circ$ or 157.5°	[Max 3 out of 4 if any extra answers present in range,
M1	or in radians]
A1	SR answer only is B1, B1
A1	justification – ie graph or substitution is B2, B2

6	(i)	(a) $100 + 239 \times 5 = \pounds 1295$	M1		For relevant use of $a + (n-1)d$
			A1	2	For correct value 1295
		(b) $\frac{1}{2} \times 240 \times (100 + 1295) = \pounds 167400$	M1		For relevant use of $\frac{1}{2}n(a+l)$ or equivalent
			A1	2	For correct value 167400
	(ii)	$100r^{239} = 1500 \Longrightarrow r = 1.01139$	B1		For correct statement of $100r^{239} = 1500$
			M1		Attempt to find <i>r</i>
			A1		For correct value 1.01
		$100(1.01139^{240} - 1)$	M1		For relevant use of GP sum formula
		Hence total is $\frac{100(1.01139^{240} - 1)}{1.01139 - 1} = \pounds124359$	A1	5	For correct value 124359 (3 s.f. or better)
				<u>9</u>	
7	(i)	$AC^{2} = 11^{2} + 8^{2} - 2 \times 11 \times 8 \times \cos 0.8$	M1		Attempt to use the cosine formula
		= 62.3796	A1		Correct unsimplified expression
		Hence $AC=7.90$ cm	A1	3	Show the given answer correctly
	(ii)	Area of sector = $\frac{1}{2} \times 7.90^2 \times 1.7 = 53.0$	M1		Attempt area of sector using $(\frac{1}{2})r^2\theta$
		Area of triangle = $\frac{1}{2} \times 7.90^2 \times \sin 1.7 = 30.9$	M1		Attempt area of $\triangle ACD$, using $(\frac{1}{2})r^2 \sin \theta$, or equiv
		Hence shaded area = 22.1 cm^2	A1	3	Obtain 22.1
	(iii)	(arc) $DC = 7.90 \times 1.7 = 13.4$	M1		Use $r\theta$ to attempt arc length
			A1		Obtain 13.4
		(line) $DC^2 = 7.90^2 + 7.90^2 - 2 \times 7.90 \times 7.90 \times \cos 1.7$ DC = 11.9	M1		Attempt length of line <i>DC</i> using cosine rule or equiv.
		Hence perimeter = 25.3cm	A1	4 10	Obtain 25.3
8	(i)	$f(2) = 12 \Longrightarrow 4a + 2b = 6$	M1	10	For equating f(2) to 12
_			A1		For correct equation $4a + 2b = 6$
		$f(-1) = 0 \Longrightarrow a - b = 12$	M1		For equating $f(-1)$ to 0
			A1		For correct equation $a - b = 12$
		Hence $a = 5, b = -7$	M1		For attempt to find <i>a</i> and <i>b</i>
			A1	6	For both values correct
	(ii)	Quotient is $2x^2 + x - 9$	B1		For correct lead term of $2x^2$
			M1		For complete division attempt or equiv
			A1		For completely correct quotient
		Remainder is 8	M1		For attempt at remainder – either division or $f(-2)$
			A1	5	For correct remainder
				<u>11</u>	

9	(i)	1			
7	(i)				
		1	M1		Attempt sketch of any exponential graph, in at least
		,,,,,,	A1		first quadrant Correct graph – must be in both quadrants
		-	B1	3	For identification of $(0, 1)$
	(ii)	$A \approx \frac{1}{2} \times 0.5 \times \left\{ 1 + 2 \left(0.5^{\frac{1}{2}} + 0.5 + 0.5^{\frac{3}{2}} \right) + 0.5^{2} \right\}$	B1		State, or imply, at least three correct y-values
			M1		For correct use of trapezium rule, inc correct h
		≈ 1.09	A1 A1	4	For correct unsimplified expression For the correct value 1.09, or better
	(iii)	$\left(\frac{1}{2}\right)^x = \frac{1}{6} \Longrightarrow x \log_{10} \frac{1}{2} = \log_{10} \frac{1}{6}$	M1		For equation $\left(\frac{1}{2}\right)^x = \frac{1}{6}$ and attempt at logs
		$x = \frac{\log_{10} \frac{1}{6}}{\log_{10} \frac{1}{2}} = \frac{-\log_{10} 6}{-\log_{10} 2}$	A1		Obtain $x \log(\frac{1}{2}) = \log(\frac{1}{6})$, or equivalent
		Hence $=\frac{\log_{10} 2 + \log_{10} 3}{\log_{10} 2}$	M1		For use of $\log 6 = \log 2 + \log 3$
		- 10		4	
		$=1+\frac{\log_{10} 3}{\log_{10} 2}$	A1		For showing the given answer correctly
		OR			
		$\left(\frac{1}{2}\right)^x = \frac{1}{6} \Longrightarrow 2^x = 6$			
		$\Rightarrow x \log_{10} 2 = \log_{10} 6$	M1		For equation $2^x = 6$ and attempt at logs
		$x = \frac{\log_{10} 6}{\log_{10} 2}$	A1		Obtain $x \log 2 = \log 6$, or equivalent
		0.10			
		$=\frac{\log_{10} 2 + \log_{10} 3}{\log_{10} 2}$	M1		For use of $\log 6 = \log 2 + \log 3$
		- 10	1411		For showing the given answer correctly
		$=1+\frac{\log_{10} 3}{\log_{10} 2}$	A1		Tor showing the given unswer correctly
		OR			
		$\left(\frac{1}{2}\right)^x = \frac{1}{6} \Longrightarrow 2^x = 6$	M1		
		$2^{x-1} = 3$ (x-1)log ₁₀ 2 = log ₁₀ 3	1411		Attempt to rearrange equation to $2^n = 3$
			A1 M1		Obtain $2^{x-1} = 3$
		Hence $x = 1 + \frac{\log_{10} 3}{\log_{10} 2}$			For attempt at logs
		OR	A1		For showing the given answer correctly
		$x = \frac{\log_{10} 2 + \log_{10} 3}{\log_{10} 2}$			
		$\frac{\log_{10} 2}{\log_{10} 6}$	M1		Use $\log 2 + \log 3 = \log 6$
		$\frac{\log_{10} \sigma}{\log_{10} 2}$	1111		
		$x \log_{10} 2 = \log_{10} 6$	A1		Obtain x log 2 = log 6
		$\log_{10} 2^x = \log_{10} 6$	M1		Attempt to remove logarithms
		$2^x = 6$			
		$\left(\frac{1}{2}\right)^{x} = \frac{1}{2}$			
		(2) 6	A1		Show $\left(\frac{1}{2}\right)^x = \frac{1}{6}$ correctly
				<u>11</u>	